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Rezumat: Lucrarea prezini anumite aspecte privind modelarea com@airtpamanturilor in
condfgiile starii plane de deformgi, prin metoda elementului finit. A fost dezvoliatacest scop
un program de calcul cu sursleschig, care utilizeaz elemente de forindreptunghiulai, cu
8 grade de libertatei care poate fi opnut de la adresa http://matgts.sourceforge.ngé
prezint: formularea unora dintre modelele constitutive iaéite, precunyi anumite probleme
legate de implementarea lor. Vagia deplagrilor se consided liniara Tn interiorul fiecirui
elementi se propune 0 metadsimpli pentru evitarea supraestimii rigidit azii la incovoiere a
elementelor, care ar cauza imposibilitatea madetedarii la forfecare a materialului. Sunt de
asemenea prezentate, interpretatecomparate cu rezultate ghute prin alte metode mai
simple, rezultatele catorva analize neliniare, &tati dinamice, ale unor taluzuri sub ggni
seismice, in urmadacora s-au obinut deplagri si acceleraii critice.

Abstract: The paper presents certain aspects of modellwifytehaviour under plane strain
conditions, by means of the finite element metAndopen source computational program was
developed for this purpose, which implements raepttar shell elements with 8 degrees of
freedom and can be downloaded from http://matgiscedorge.netThe formulation of some of
the constitutive models used is presented, as asllspecific problems related to their
implementation. The displacements inside each eleare assumed to have linear variations
and a simple method is proposed for the eliminatibmolumetric locking (which would cause
overestimation of the bending stiffness of the eildm leading to unacceptable results,
especially after shear failure of the material)tivaut increasing the number of equations. The
results of several nonlinear static and dynamic lgs@s of slopes under seismic loading, in
which displacements and critical accelerations wesedculated, are shown, interpreted and
compared to results obtained through other, simpiethods.
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1. Introduction

Several types of computational methods are cugrarged for the analysis of slopes under seismic
loading. Most of these methods use limit equilibri{l-3] or finite elements [4,5]. Considering the
rapid advancements in computer technology, theatiselement method may also start to be widely

used at some point in the future. The objectivéhf paper is to study certain aspects relatethdo t
use of the finite element method.

2. Theoretical aspects
2.1. Constitutive behaviour of soils
Generally, Equation (1) is used for the mathembtigression of the stress-strain behaviour of

material models:
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Because soils have nonlinear behaviours, it is gseeg that the constitutive equations relate
increments of stress and strain, as indicated ahogehat matrix [D] depends on the current and pas
stresses. For an isotropic linear elastic matemaltyix [D] is given by Equation (2).

In order to apply these relations to a real geatieeth problem, certain assumptions and idealisation
must be made, including simplification of the getnper of the boundary conditions. Problems like
the analysis of retaining walls, continuous foosirend slopes generally have one dimension very
large in comparison with the other two. If the fg@nd boundary conditions are perpendicular to and
independent of that dimension, all cross sectioiida the same and the case of plane strain, eéfin
by Equations (3), can be considered.
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The case of plane strain will be detailed belowthese conditions, the constitutive behaviour of an
isotropic linear elastic material is expressed Qudions (4) and (5):
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Equation (5), in which E is the elasticity modulaisd v is Poisson's ratio, will be assumed for all
material models described below, so that only tressess, , o, andt,, have to be considered in the
analysis. This is acceptable if the Mohr-Coulomlilufa condition is used and the principal
intermediate stress; , is assumed to be equal (3 .

2.2. Mohr-Coulomb modd

The Mohr-Coulomb model is an elastic - perfecthagpic constitutive model, which uses a yield
function given by Equations (6) and (7):

Flo)=(-0,)—(-0,)-K,~2-c\K] ©)
K=tg'(45"+=)

2 )
whereo; andas are principal stresses (Figure ¢Js the internal friction angle and c is the cobasi



Fig. 1 - Principal stresses

When F@) < 0, the material is considered to have an el&sthaviour, expressed in Equation (4).

When F@) = 0, the behaviour of the material is plastic ambther relation must be determined,
having the form shown in Equation (8):
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Because the yield function is expressed in termgrioicipal stresses, a constitutive matrix, [Akal
expressed in terms of principal stresses, will le¢emnined first, and then matrix [B] will be
determined through its rotation, as shown in Equiati(9):
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where8 is the angle shown in Figure 1 asgd ande,, are strains in the directions of the principal
stressesy; andos .

Relations (10) ... (14) show how matrix [A] is datined. Relation (13) is applicable when the shear
strain increment is 0 arfd = €3 , like in Equation (11).
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where?1 and93= &, 71 gre principal stress increments caused by a \athimnstrain increment

equal to 10 is a dilatancy coefficient equal to the ratio bedw plastic volumetric strain and plastic
shear strain and K is the bulk modulus of the nnater

When F) = 0, the behaviour of the material model for tiext load increment can be described
using the constitutive matrix [B] in equations (9)lastic behaviour, as well as the constitutiverina

in equation (4) - elastic behaviour. The matrix efhieads to the lowest value of the elastic paaénti
energy of the element is chosen.

The elastic potential energy of the material pet ainvolume is given by equation (15):
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where [B] is the elastic constitutive matrix fromquation (4).

2.3. Finite element analysis

For the purpose of using constitutive models sughthe one described at 1.2, a computational
program ( currently available at http://matgts.sefwrge.net) was developed, in which the sail is
modelled by rectangular finite shell elements withodes and 8 degrees of freedom, as illustrated in
Figure 2. The stiffnesses of such an element caraloellated using Equation (16). The strains thea
element are considered to have linear variations.

Fig. 2 - Finite element type
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wherea,”, 6,7, 1,, are stresses caused by a displacement equal fipliechin the direction of the

degree of freedormande,?, €,9, y,,9 are strains caused by a displacement equal tppligd in the
direction of the degree of freedgm

Equations (16) overestimate the bending stiffndsth@ element and can lead to unrealistic results,
especially when shear failure occurs. The plastiosttutive matrix for a material witlk = 0O,
calculated according to (9) ... (14), has the famwn in Equation (17). In that case, the element,



which has no shear stiffness, should also haveemdibg stiffness. This is solved by calculating the
stiffnesses of such an element using Equations, (@Bjch were determined directly from the
condition that the bending stiffness is 0, instehBquations (16).
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Fig. 3 - Deformations of an element
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However, equations (18) lead to numerical instahbilso the stiffnesses of an element whose

constitutive matrix is of the form shown in (17gdre calculated in the program with (19):
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where k® are stiffnesses calculated with (16)%kare stiffnesses calculated with (18) and p = 0,01.

In general, the constitutive matrix [B] is decompdsas shown in (20) and the stiffnesses of all
elements are calculated as follows: a stiffnessrima calculated considering for the element's



material the matrix [B]and using equations (19), another stiffness maroalculated using [Bland
equations (16) and the 2 stiffness matrices areddbhe resulting matrix is the total stiffness ninat
of the element.
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To allow for the effect of pore water pressureg finogram mentioned above can use 2 separate
stiffness matrices for each element, thus allowaffgctive stresses and pore water pressures to be
calculated independently (assuming undrained ciomdi}.

3. Analysis examples

The following analyses were performed for the modéligure 4:

e pseudo-static analyses using Bishop's method aéssli1955) and the finite element method,
to determine the critical horizontal acceleration;

e dynamic analyses using Newmark's sliding block oetli1965) and the finite element
method, for the N-S component of the seismic motiecorded at INCERC, in Bucharest,
during the earthquake from March 4, 1977.
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Fig. 4 - Model used in analyses

The Mohr-Coulomb model described above was uséldériinite element analyses and the following
parameters were considergds 20 KN/n?, ¢ = 1¢, ¢ = 30 KPa, E = 660000 KPa= 0.45,a = 0. In

the pseudo-static analyses, the seismic forces meptaced with static horizontal forces, appliethat
centres of the slices in the case of Bishop's ntkthmw at the nodes in the case of the finite elémen
method. Each horizontal force was equal to theespwnding weight multiplied by a coefficient. k
The critical value of the coefficient wag k 0.15 for Bishop's method ang k 0.17 for the finite
element method, the results of which are illusttait®@ Figure 6. The accelerogram used for the
dynamic analyses is shown in Figure 5.
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Fig. 5 - accelerogram used in the dynamic analyses
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Fig. 6 - Displacements and shear strains calcufatekH
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Results for phase 2, all materials - shear strains
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Fig. 7 - Displacements and shear strains resuttad the dynamic analysis
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Results For phase 2, all materials - shear strains
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Fig. 8 - Displacements and shear strains resuttad the dynamic analysis (different boundary caodg)

Two sets of boundary conditions were considerettiéndynamic analyses, as shown in Figures 7 and
8. The permanent displacement calculated for theesaccelerogram with Newmark's sliding block
method and considering a critical horizontal acedien &, = k. - g = 0.15 g (the value obtained



using Bishop's method) was approximately 30 mm,gamable to the values shown in Figures 7 and
8.

4. Conclusions

In this case, the displacements calculated with ieask's sliding block method were comparable to
those resulted from the finite element analysiswveleer, Newmark's method only provides a value for
the horizontal displacement, it gives no informatabout how the model could deform and ignores a
large number of factors (deformability, dynamic difiqgation, pore water pressures etc.). Although
several commercial finite element analysis compptegrams designed for modelling soil currently
exist, the development and use of a free such anogvas preferred, since commercial software most
often comes with restrictive licensing conditionsdaechnical measures to prevent its use and is
therefore not considered a viable option by thé@@ubf this paper.
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