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Rezumat: Lucrarea prezintă anumite aspecte privind modelarea comportării pământurilor în 
condiţiile stării plane de deformaţii, prin metoda elementului finit. A fost dezvoltat în acest scop 
un program de calcul cu sursă deschisă, care utilizează elemente de formă dreptunghiulară, cu 
8 grade de libertate şi care poate fi obţinut de la adresa http://matgts.sourceforge.net. Se 
prezintă formularea unora dintre modelele constitutive utilizate, precum şi anumite probleme 
legate de implementarea lor. Variaţia deplasărilor se consideră liniară în interiorul fiecărui 
element şi se propune o metodă simplă pentru evitarea supraestimării rigidit ăţii la încovoiere a 
elementelor, care ar cauza imposibilitatea modelării cedării la forfecare a materialului. Sunt de 
asemenea prezentate, interpretate şi comparate cu rezultate obţinute prin alte metode mai 
simple, rezultatele câtorva analize neliniare, statice şi dinamice, ale unor taluzuri sub acţiuni 
seismice, în urma cărora s-au obţinut deplasări şi acceleraţii critice. 

Abstract: The paper presents certain aspects of modelling soil behaviour under plane strain 
conditions, by means of the finite element method. An open source computational program was 
developed for this purpose, which implements rectangular shell elements with 8 degrees of 
freedom and can be downloaded from http://matgts.sourceforge.net. The formulation of some of 
the constitutive models used is presented, as well as specific problems related to their 
implementation. The displacements inside each element are assumed to have linear variations 
and a simple method is proposed for the elimination of volumetric locking (which would cause 
overestimation of the bending stiffness of the elements, leading to unacceptable results, 
especially after shear failure of the material), without increasing the number of equations. The 
results of several nonlinear static and dynamic analyses of slopes under seismic loading, in 
which displacements and critical accelerations were calculated, are shown, interpreted and 
compared to results obtained through other, simpler methods. 
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1. Introduction 

Several types of computational methods are currently used for the analysis of slopes under seismic 
loading. Most of these methods use limit equilibrium [1-3] or finite elements [4,5]. Considering the 
rapid advancements in computer technology, the discrete element method may also start to be widely 
used at some point in the future. The objective of this paper is to study certain aspects related to the 
use of the finite element method. 

2. Theoretical aspects  

2.1. Constitutive behaviour of soils 

 
Generally, Equation (1) is used for the mathematical expression of the stress-strain behaviour of 
material models: 

          (1) 
 



Where  (stresses and 
strains) 

Because soils have nonlinear behaviours, it is necessary that the constitutive equations relate 
increments of stress and strain, as indicated above and that matrix [D] depends on the current and past 
stresses. For an isotropic linear elastic material, matrix [D] is given by Equation (2).  

In order to apply these relations to a real geotechnical problem, certain assumptions and idealisations 
must be made, including simplification of the geometry or of the boundary conditions.  Problems like 
the analysis of retaining walls, continuous footings and slopes generally have one dimension very 
large in comparison with the other two. If the forces and boundary conditions are perpendicular to and 
independent of that dimension, all cross sections will be the same and the case of plane strain, defined 
by Equations (3), can be considered. 

   (2) 

         (3) 

 
The case of plane strain will be detailed below. In these conditions, the constitutive behaviour of an 
isotropic linear elastic material is expressed by Equations (4) and (5): 

     (4) 

          (5) 
 
Equation (5), in which E is the elasticity modulus and ν is Poisson's ratio, will be assumed for all 
material models described below, so that only the stresses σx , σy and τxy have to be considered in the 
analysis. This is acceptable if the Mohr-Coulomb failure condition is used and the principal 
intermediate stress, σ2 , is assumed to be equal to  σz . 

2.2. Mohr-Coulomb model 

The Mohr-Coulomb model is an elastic - perfectly plastic constitutive model, which uses a yield 
function given by Equations (6) and (7): 

       (6) 

          (7) 
where σ1 and σ3 are principal stresses (Figure 1), φ is the internal friction angle and c is the cohesion. 



 
 

 

 

 
 
 

 

 

 

 

Fig. 1 - Principal stresses 

 
When F(σ) < 0, the material is considered to have an elastic behaviour, expressed in Equation (4). 

When  F(σ) = 0, the behaviour of the material is plastic and another relation must be determined, 
having the form shown in Equation (8): 

           (8) 

where  (stresses and strains in plane xOy) 

Because the yield function is expressed in terms of principal stresses, a constitutive matrix, [A], also 
expressed in terms of principal stresses, will be determined first, and then matrix [B] will be 
determined through its rotation, as shown in Equations (9): 

; ; 

; ; 

;   (9) 
 
where θ is the angle shown in Figure 1 and εσ1 and εσ2 are strains in the directions of the principal 
stresses, σ1 and σ3 .  

Relations (10) ... (14) show how matrix [A] is determined. Relation (13) is applicable when the shear 

strain increment is 0 and , like in Equation (11). 

       (10) 

         (11) 

 



        (12) 

 (13) 

   (14) 

 

where and  are  principal stress increments caused by a volumetric strain increment 
equal to 1, α is a dilatancy coefficient equal to the ratio between plastic volumetric strain and plastic 
shear strain and K is the bulk modulus of the material. 

When F(σ) = 0, the behaviour of the material model for the next load increment can be described 
using the constitutive matrix [B] in equations (9) - plastic behaviour, as well as the constitutive matrix 
in equation (4) - elastic behaviour. The matrix which leads to the lowest value of the elastic potential 
energy of the element is chosen. 

The elastic potential energy of the material per unit of volume is given by equation (15): 

      (15) 
 
where [B] is the elastic constitutive matrix from Equation (4). 

2.3. Finite element analysis  

For the purpose of using constitutive models such as the one described at 1.2, a computational 
program ( currently available at http://matgts.sourceforge.net ) was developed, in which the soil is 
modelled by rectangular finite shell elements with 4 nodes and 8 degrees of freedom, as illustrated in 
Figure 2. The stiffnesses of such an element can be calculated using Equation (16).  The strains in each 
element are considered to have linear variations. 

 

 

 
 
 
 
 
 
 
 

Fig. 2 - Finite element type 

      (16) 
 
where σx

(i), σy
(i), τxy

(i) are stresses caused by a displacement equal to 1, applied in the direction of the 
degree of freedom i and εx

(j), εy
(j), γxy

(j) are strains caused by a displacement equal to 1, applied in the 
direction of the degree of freedom j. 

Equations (16) overestimate the bending stiffness of the element and can lead to unrealistic results, 
especially when shear failure occurs. The plastic constitutive matrix for a material with α = 0, 
calculated according to (9) ... (14), has the form shown in Equation (17). In that case, the element, 



which has no shear stiffness, should also have no bending stiffness. This is solved by calculating the 
stiffnesses of such an element using Equations (18), which were determined directly from the 
condition that the bending stiffness is 0, instead of Equations (16). 

       (17) 

 

 

 

 

 

 

Fig. 3 - Deformations of an element 

 

 

 

 

 

 

 

 

    (18) 
 
However, equations (18) lead to numerical instability, so the stiffnesses of an element whose 
constitutive matrix is of the form shown in (17) are be calculated in the program with (19): 

          (19) 
 
where kj,i

(1) are stiffnesses calculated with (16), kj,i
(2) are stiffnesses calculated with (18) and p = 0,01. 

In general, the constitutive matrix [B] is decomposed, as shown in (20) and the stiffnesses of all 
elements are calculated as follows: a stiffness matrix is calculated considering for the element's 



material the matrix [B]1 and using equations (19), another stiffness matrix is calculated using [B]2 and 
equations (16) and the 2 stiffness matrices are added. The resulting matrix is the total stiffness matrix 
of the element. 

 (20) 

To allow for the effect of pore water pressures, the program mentioned above can use 2 separate 
stiffness matrices for each element, thus allowing effective stresses and pore water pressures to be 
calculated independently (assuming undrained conditions). 

3. Analysis examples 

The following analyses were performed for the model in Figure 4: 

• pseudo-static analyses using Bishop's method of slices (1955) and the finite element method, 
to determine the critical horizontal acceleration; 

• dynamic analyses using Newmark's sliding block method (1965) and the finite element 
method, for the N-S component of the seismic motion recorded at INCERC, in Bucharest, 
during the earthquake from March 4, 1977. 

 

 

Fig. 4 - Model used in analyses 

 
The Mohr-Coulomb model described above was used in the finite element analyses and the following 
parameters were considered: γ = 20 KN/m3, φ = 100, c = 30 KPa, E = 660000 KPa, ν = 0.45, α = 0. In 
the pseudo-static analyses, the seismic forces were replaced with static horizontal forces, applied at the 
centres of the slices in the case of Bishop's method and at the nodes in the case of the finite element 
method. Each horizontal force was equal to the corresponding weight multiplied by a coefficient kH. 
The critical value of the coefficient was kH = 0.15 for Bishop's method and kH ≃ 0.17 for the finite 
element method, the results of which are illustrated in Figure 6. The accelerogram used for the 
dynamic analyses is shown in Figure 5. 

 

 

 
 



 

 

Fig. 5 - accelerogram used in the dynamic analyses 

 

 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 - Displacements and shear strains calculated for kH = 0.17 

 

 

 

 

 

 
 



 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 - Displacements and shear strains resulted from the dynamic analysis 

 

Fig. 8 - Displacements and shear strains resulted from the dynamic analysis (different boundary conditions) 

 
Two sets of boundary conditions were considered in the dynamic analyses, as shown in Figures 7 and 
8. The permanent displacement calculated for the same accelerogram with Newmark's sliding block 
method and considering a critical horizontal acceleration acr,H = kcr,H ⋅g = 0.15⋅g (the value obtained 



using Bishop's method) was approximately 30 mm, comparable to the values shown in Figures 7 and 
8. 

4. Conclusions 

In this case, the displacements calculated with Newmark's sliding block method were comparable to 
those resulted from the finite element analysis. However, Newmark's method only provides a value for 
the horizontal displacement, it gives no information about how the model could deform and ignores a 
large number of factors (deformability, dynamic amplification, pore water pressures etc.). Although 
several commercial finite element analysis computer programs designed for modelling soil currently 
exist, the development and use of a free such program was preferred, since commercial software most 
often comes with restrictive licensing conditions and technical measures to prevent its use and is 
therefore not considered a viable option by the author of this paper. 
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