1. Coordinate transformations

1.1. 2D

Point A in Figure 1.1 has coordinates x_{A} and y_{A} in system $\mathrm{xO}_{0} \mathrm{y}$ and X_{A} and Y_{A} in system XOY. Coordinates in one system can be calculated as functions of the coordinates in the other system according to relations (1.1) and (1.2).

Figura 1.1 - Coordinates of a point in 2 systems of axes

$$
\begin{align*}
& \vec{i}=\binom{i_{X}}{i_{Y}}=\binom{\cos \theta}{\sin \theta} ; \vec{j}=\binom{j_{X}}{j_{Y}}=\binom{-\sin \theta}{\cos \theta} ;\left[\begin{array}{ll}
C]=(\vec{i} & \vec{j}
\end{array}\right)=\left(\begin{array}{ll}
i_{X} & j_{X} \\
i_{Y} & j_{Y}
\end{array}\right)=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) ; \\
& \binom{X_{0}}{Y_{0}}=\vec{R}_{0} ;\binom{X_{A}}{Y_{A}}=\vec{R}_{A}=\vec{R}_{0}+\vec{r}_{A} ; \vec{r}_{A}=x_{A} \cdot \vec{i}+y_{A} \cdot \vec{j} ; \\
& \binom{X_{A}}{Y_{A}}=\binom{X_{0}}{Y_{0}}+x_{A} \cdot\binom{i_{X}}{i_{Y}}+y_{A} \cdot\binom{j_{X}}{j_{Y}}=\binom{X_{0}}{Y_{0}}+\left(\begin{array}{ll}
i_{X} & j_{X} \\
i_{Y} & j_{Y}
\end{array}\right) \cdot\binom{x_{A}}{y_{A}}=\binom{X_{0}}{Y_{0}}+[C] \cdot\binom{x_{A}}{y_{A}} \tag{1.1}\\
& \binom{X_{A}}{Y_{A}}-\binom{X_{0}}{Y_{0}}=[C] \cdot\binom{x_{A}}{y_{A}} \rightarrow\binom{x_{A}}{y_{A}}=[C]^{-1} \cdot\binom{X_{A}-X_{0}}{Y_{A}-Y_{0}}=[C]^{T} \cdot\binom{X_{A}-X_{0}}{Y_{A}-Y_{0}} \tag{1.2}
\end{align*}
$$

where i_{X}, i_{Y}, j_{X} and j_{Y} are projections of unit vectors \vec{i} and \vec{j} of axes x and y on axes X and Y.
1.2.3D

$$
[C]=\left(\begin{array}{lll}
\vec{i} & \vec{j} & \vec{k}
\end{array}\right)=\left(\begin{array}{ccc}
i_{X} & j_{X} & k_{X} \tag{1.3}\\
i_{Y} & j_{Y} & k_{Y} \\
i_{Z} & j_{Z} & k_{Z}
\end{array}\right) ;\left(\begin{array}{l}
X_{A} \\
Y_{A} \\
Z_{A}
\end{array}\right)=\left(\begin{array}{l}
X_{0} \\
Y_{0} \\
Z_{0}
\end{array}\right)+[C] \cdot\left(\begin{array}{l}
x_{A} \\
y_{A} \\
z_{A}
\end{array}\right)
$$

$$
\left(\begin{array}{l}
x_{A} \tag{1.4}\\
y_{A} \\
z_{A}
\end{array}\right)=[C]^{T} \cdot\left(\begin{array}{c}
X_{A}-X_{0} \\
Y_{A}-Y_{0} \\
Z_{A}-Z_{0}
\end{array}\right)
$$

